201. Electrochemical Oxidation of Bis (methylthio)benzenes

by Paul Margaretha

Institut Le Bel, Université Louis Pasteur, F-67000 Strasbourg

Dedicated to Professor Edgardo Giovannini on the occasion of his 70th birthday

(25. VII. 79)

Summary

The bis (methylthio)benzenes 3a-3c are oxidized to the methylsulfinyl-methylthiobenzenes 4a-4c on a Pt-anode in good yields.

In preceding publications [1] [2] we had discussed the electrochemical oxidation of some dialkoxybenzenes, e.g. the conversion $1 \rightarrow 2$. Although the voltammetric behaviour of the analogous disulfur compounds has been reported in detail [3] [4], possible subsequent chemical reactions have not received a great deal of attention. The anodic oxidation of some simple sulfides has been investigated [5], e.g. thioanisole has been reported to give 74% methylsulfinylbenzene on Pt [6], but for these examples the conventional oxidation of sulfides to sulfoxides by sodium metaperiodate [7] is superior, giving better yields and being easier to handle. We now report on the electrochemical oxidation of the bis (methylthio)benzenes 3a-3c.

Electrolysis of these compounds in MeOH/THF 5:1, the latter being added for solubility reasons, or in CH_3CN/H_2O 99:1 on Pt-electrodes with tetraethylammoniumperchlorate (TEAP) as electrolyte leads to the formation of the methylsulfinyl-methylthiobenzenes 4a-4c in good yields, the oxidation of the second methylthio group or of the sulfoxide to the sulfone beginning to compete after a much higher degree of conversion $3\rightarrow 4$ than with any chemical oxidizing agent. For illustration, 4a had only been obtained from 3a in a four-step reaction [8], while compounds as 4b and 4c had not been isolated at all, only the bis (methylsulfonyl)benzenes being known. The electrochemical oxidation of 3a-3c to 4a-4c being much more selective than any chemical oxidation is therefore a synthetic useful reaction. NMR.- and mass-spectral data of 4a-4c are summarized in the Table.

In contrast to compounds like 1, no anodic addition [9] has been observed with 3a-3c. In methanolic KOH no conversion $3\rightarrow 4$ takes place, presumably due to reduction of the radical cation by the nucleophile CH_3O^- . Acetate or pyridine also did not add to the aromatic ring. No benzylic substitution was observed with either 3c or the monothiomethyl compound 3d. Less than 5% of 2 were detected after oxidation of 3e in MeOH, arising most probably from an anodic substitution/anodic addition sequence. All these results indicate that the positive

 Compound
 ¹H-NMR. (CDCl₃)
 MS.

 4a
 2.55 (s, 3 H); 2.75 (s, 3 H); 7.45 and 7.65 (AA'XX', 4 H, J=8.5 Hz)
 186, 171

 4b
 2.52 (s, 3 H); 2.75 (s, 3 H); 7.50-7.70 (m, 4 H)
 186, 171

 4c
 2.42 (s, 3 H); 2.53 (s, 3 H); 2.80 (s, 3 H); 7.26-7.93 (m, 3 H)
 200, 185

Table. ¹H-NMR.- and mass-spectral data of **4a-4c**

$$\begin{picture}(20,0) \put(0,0){\line(1,0){\mathbb{R}^3}} \put(0,0){\lin$$

charge in the radical cation is localized on the sulfur atom [6] so that nucleophilic addition to the benzene ring or substitution on the benzylic methyl groups do not become competitive.

Financial support by the Swiss National Science Foundation is gratefully acknowledged.

Experimental Part

The electrolysis apparatus consisted of a 200 ml cell, a cylindrical Pt-anode (6 cm²) and a Pt-foil as cathode (4 cm²) with a distance of 0.5 cm between the electrodes. The power supply was a d.c. adjustable source. For a constant current intensity of 0.150 A the tension varied between 9-10.5 V.

Materials. The bis(methylthio)benzenes 3a [8] and 3b [10] and the thiomethylbenzenes 3d [11] and 3e [12] were synthesized following the literature. 3c was obtained by methylation of 3,4-dimercaptotoluene (Prolabo SA) with dimethylsulfate in 87% yield (m.p. 39-40°; ¹H-NMR. (CDCl₃): 2.35 (s, 3 H); 2.46 (s, 3 H); 2.48 (s, 3 H); 7.10-7.28 (m, 3 H)).

Preparation of methylsulfinylmethylthiobenzenes 4. – 4a and 4c. A solution of 10^{-2} mol 3a or 3c and 1.5 g TEAP in 150 ml MeOH/THF 5:1 was electrolyzed with 120% of the theoretical current amount. After evaporation of the solvent the residue was extracted 3 times with 100 ml boiling hexane; 4a crystallizes on cooling and is obtained in 83% yield after recrystallization from hexane, m.p. $101-102^{\circ}$ (lit. [8]: 102°), 4c is obtained as a colorless oil after evaporation of the hexane and column chromatography (SiO₂, C₆H₆/MeOH 6:1) in 74% yield.

4b. As the reaction in MeOH proceeds very slowly, CH₃CN/H₂O 99:1 was used as solvent. Thus 10^{-2} mol **3b** (1.5 g TEAP) were electrolyzed with 90-95% of the theoretical current amount. After evaporation of the solvent, extraction with boiling hexane and reevaporation, column chromatography of the residue (50% **3b** and 50% **4b**) on SiO₂ (CH₂Cl₂/MeOH 11:1) gave **4b** as a colorless oil in 45% yield. On increasing the current amount, the sulfoxide is oxidized to the sulfone and the overall yield of **4b** is lowered.

REFERENCES

- [1] P. Margaretha & P. Tissot, Helv. 58, 933 (1975).
- [2] P. Margaretha & P. Tissot, Org. Synth. 57, 92 (1977).
- [3] A. Zweig, W.G. Hodgson, W.H. Jura & D.L. Maricle, Tetrahedron Letters 1963, 1821.
- [4] A. Zweig, A. H. Maurer & B. G. Roberts, J. org. Chemistry 32, 1322 (1967).
- [5] F. Fichter & W. Wenk, Ber. deutsch. chem. Ges. 45, 1373 (1912).
- [6] K. Uneyama & S. Torii, Tetrahedron Letters 1971, 329.
- [7] N.J. Leonard & C. R. Johnson, J. org. Chemistry 27, 282 (1962).
- [8] T. Zincke & W. Frohneberg, Ber. deutsch. chem. Ges. 42, 2721 (1909).
- [9] L. Eberson & K. Nyberg, Tetrahedron 32, 2185 (1976).
- [10] T. Zincke & W. Krüger, Ber. deutsch. chem. Ges. 45, 3474 (1912).
- [11] K. Auwers & F. Arndt, Ber. deutsch. chem. Ges. 42, 540 (1909).
- [12] C.M. Suter & H.L. Hansen, J. Amer. chem. Soc. 54, 4100 (1932).